Optimal Control of Dynamical Systems with Time-invariant Probabilistic Parameter Uncertainties

نویسندگان

  • Dongying Erin Shen
  • Edwin R. Gilliland
چکیده

The importance of taking model uncertainties into account during controller design is well established. Although this theory is well developed and quite mature, the worst-case uncertainty descriptions assumed in robust control formulations are incompatible with the uncertainty descriptions generated by commercial model identification software that produces time-invariant parameter uncertainties typically in the form of probability distribution functions. This doctoral thesis derives rigorous theory and algorithms for the optimal control of dynamical systems with time-invariant probabilistic uncertainties. The main contribution of this thesis is new feedback control design algorithms for linear time-invariant systems with time-invariant probabilistic parametric uncertainties and stochastic noise. The originally stochastic system of equations is transformed into an equivalent deterministic system of equations using polynomial chaos (PC) theory. In addition, the H2and H∞-norms commonly used to describe the effect of stochastic noise on output are transformed such that the eventual closed-loop performance is insensitive to parametric uncertainties. A robustifying constant is used to enforce the closed-loop stability of the original system of equations. This approach results in the first PCbased feedback control algorithm with proven closed-loop stability, and the first PC-based feedback control formulation that is applicable to the design of fixedorder state and output feedback control designs. The numerical algorithm for the control design is formulated as optimization over bilinear matrix inequality (BMI) constraints, for which commercial software is available. The effectiveness of the approach is demonstrated in two case studies that include a continuous pharmaceutical manufacturing process. In addition to model uncertainties, chemical processes must operate within constraints, such as upper and lower bounds on the magnitude and rate of change of manipulated and/or output variables. The thesis also demonstrates an optimal feedback control formulation that explicitly addresses both constraints and time-invariant probabilistic parameter uncertainties for linear timeinvariant systems. The H2-optimal feedback controllers designed using the BMI formulations are incorporated into a fast PC-based model predictive control

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties

In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

A Probabilistic Approach to Robust Optimal Experiment Design with Chance Constraints

Accurate estimation of parameters is paramount in developing high-fidelity models for complex dynamical systems. Model-based optimal experiment design (OED) approaches enable systematic design of dynamic experiments to generate input-output data sets with high information content for parameter estimation. Standard OED approaches however face two challenges: (i) experiment design under incomplet...

متن کامل

Robust optimal multi-objective controller design for vehicle rollover prevention

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...

متن کامل

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017